GP2W0004YP

Features

- 1. Compliant with IrDA1.0
- Integrated package of transmitter/receiver.
 (9.21×3.76×height 2.71mm)
- 3. General purpose
- 4. Low dissipation current due to shut-down function (Dissipation current at shut-down mode:Max. 1.0μA)
- 5. Soldering reflow type
- 6. Shield type

■ Applications

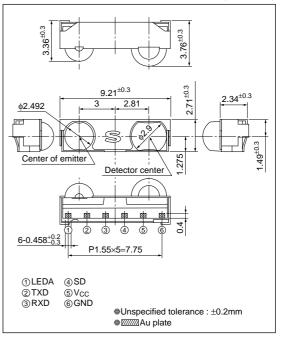
- 1. Cellular phones, PHS
- 2. Personal information tools

Parameter	Symbol	Rating	Unit	
Supply voltage	V _{CC}	0 to 6.0	V	
LED Supply voltage	V _{LEDA}	0 to 7.0	V	
Forward current	I _F	50	mA	
*1 Peak forward current	I _{FM}	600	mA	
Operating temperature	Topr	-25 to +85	°C	
Storage temperature	T _{stg}	-25 to +85	°C	
*2 Soldering temperature	T _{sol}	240	°C	

■ Absolute Maximum Ratings (T_a=25°C)

*1 Pulse width 115.2kb/s, Duty ratio :3/16

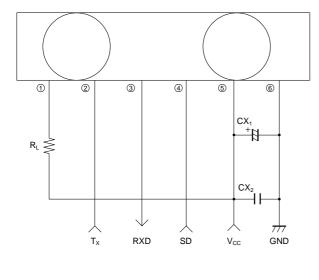
*2 For MAX. 10s


Recommended Operating Conditions

Parameter	Symbol	Rating	Unit	
Supply voltage	V _{CC}	2.4 to 5.5	V	
Transmission rate	BR	2.4 to 115.2	kb/s	
LED Supply Voltage	V _{LEDA}	2.4 to 7.0	V	
Operating temperature	T _{opr}	-25 to +85	°C	

IrDA Transceiver Module Compliant with IrDA1.0

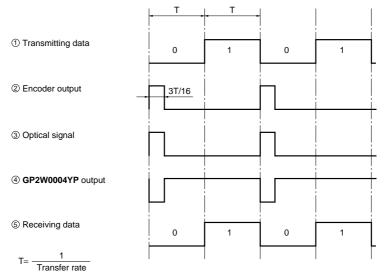
Outline Dimensions


(Unit : mm)

E E	Electrical Characteris	tics				(T _a =25°C,	V _{CC} =3.3V)
	Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
	Dissipation current at no input signal	I _{CC}	No input light, output terminal open, V _{ILSD} =0V	-	110	130	μΑ
	S/D dissipation current	I _{CC-S}	No input light, output terminal open, V_{IHSD} =V _{CC}	_	0.01	1.0	μΑ
Receiver side	High level output voltage	V _{OH1}	V _{CC} =5V, I _{OH} =500µA	4.3	4.6	-	V
		V _{OH2}	V _{CC} =2.4V, I _{OH} =500µA	1.5	1.7	-	V
	Low level output voltage	V _{OL1}	$V_{CC}=5V, I_{OL}=500\mu A^{*3}$	-	0.22	0.4	V
		V _{OL2}	V _{CC} =2.4V, I _{OL} =300µA ^{*3}	_	0.17	0.3	V
ece	Pules width	t _w	BR=9.6kb/s, 115.2kb/s*3	1.0	2.4	3.6	μs
В	Rise time	t _r	V _{CC} =5.0V, C _L =15pF	-	18	27	ns
	Fall time	t _f	V _{CC} =5.0V, C _L =15pF	_	18	27	ns
	Maximum communication distance	L	Voh, Vol, tw, tr, tf *3 shall be satisfied at $\phi \leq 15^{\circ}$	1	-	-	m
mitter Je	Radiant intensity	I_E	DD 115 011/2 $+ < 15^{\circ}$ V 2 2V *4	40	-	-	mW/sr
Transmitter	Peak emission wavelength	λ_p	BR=115.2kb/s, φ≤15°, Vleda=3.3V *4	850	870	900	nm

*3 Refer to Fig.3, 4, 5 *4 Refer to Fig.6, 7, 8

Fig.1 Recommended External Circuit


Components circuit	Recommend values		
CX1	*22µF		
CX ₂	*0.1µF		
R∟	(Table1)		

 * Please choose the most suitable CX1 and CX2 according to the noise level and noise frequency of power supply.

Table1	
VLED	R∟
2.4≤Vled≤3.6V	0Ω±5%, 0.5W
3.5≤Vled≤4.8V	1.3Ω±5%, 0.5W
4.5≤Vled≤5.5V	2.7Ω±5%, 0.5W

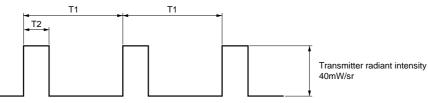

LEDA
 TXD
 RXD
 SD
 V_{CC}
 GND

Fig.2 Example of Signal Waveform

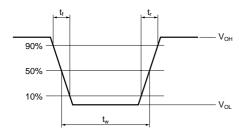
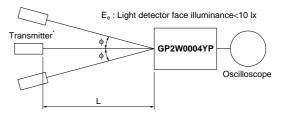
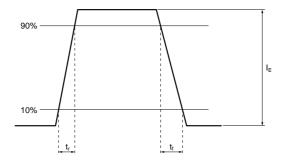

Transfer rate ; 2.4kb/s,9.6kb/s,19.2kb/s,38.4kb/s,57.6kb/s,115.2kb/s

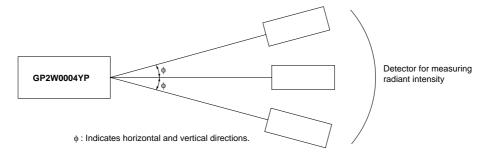
Fig.3 Input Signal Waveforrm(Receiver side)



At BR=9.6kb/s:T1=104.2µs, T2=19.5µs At BR=115.2kb/s:T1=8.68µs, T2=1.63µs

Fig.4 Output Waveform Specification (Receiver side)


Fig.5 Standard Optical System (Receiver side)


 $\boldsymbol{\phi}$: Indicates horizontal and vertical directions.

* Transmitter shall use GP2W0004YP ($\lambda p{=}870nm$ TYP.) which is adjusted the radiation intensity at 40mW/sr

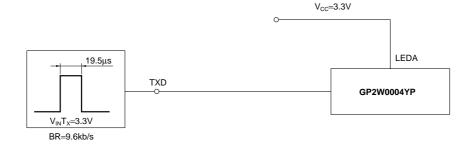

Fig.6 Output Waveform Specification(Transmitter side)

Fig.7 Standard Optical System(Transmitter side)

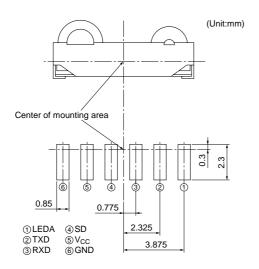
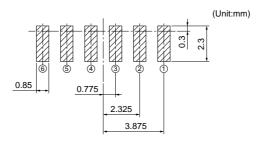


Fig.8 Recommended Circuit of Transmitter side

Fig.9 Recommended PCB Foot Pattern


Dimensions are shown for reference

	Terminal	Symbol
1	LED anode	LEDA
2	Transmitter data input	TXD
3	Receiver data output	RXD
4	Shutdown	SD
5	Supply voltage	V _{cc}
6	Ground	GND

Fig.10 Recommended Size of Solder Creamed Paste (Reference)

Please open the solder mask as below so that the size of solder creamed paste for this device before reflow soldering must be as large as one of the foot pattern land indicated Fig.9

Solder paste area

NOTICE

- The circuit application examples in this publication are provided to explain representative applications of SHARP devices and are not intended to guarantee any circuit design or license any intellectual property rights. SHARP takes no responsibility for any problems related to any intellectual property right of a third party resulting from the use of SHARP's devices.
- Contact SHARP in order to obtain the latest device specification sheets before using any SHARP device. SHARP reserves the right to make changes in the specifications, characteristics, data, materials, structure, and other contents described herein at any time without notice in order to improve design or reliability. Manufacturing locations are also subject to change without notice.
- Observe the following points when using any devices in this publication. SHARP takes no responsibility for damage caused by improper use of the devices which does not meet the conditions and absolute maximum ratings to be used specified in the relevant specification sheet nor meet the following conditions:
 - (i) The devices in this publication are designed for use in general electronic equipment designs such as:
 - --- Personal computers
 - --- Office automation equipment
 - --- Telecommunication equipment [terminal]
 - --- Test and measurement equipment
 - --- Industrial control
 - --- Audio visual equipment
 - --- Consumer electronics
 - (ii) Measures such as fail-safe function and redundant design should be taken to ensure reliability and safety when SHARP devices are used for or in connection with equipment that requires higher reliability such as:
 - --- Transportation control and safety equipment (i.e., aircraft, trains, automobiles, etc.)
 - --- Traffic signals
 - --- Gas leakage sensor breakers
 - --- Alarm equipment
 - --- Various safety devices, etc.

(iii)SHARP devices shall not be used for or in connection with equipment that requires an extremely high level of reliability and safety such as:

- --- Space applications
- --- Telecommunication equipment [trunk lines]
- --- Nuclear power control equipment
- --- Medical and other life support equipment (e.g., scuba).
- If the SHARP devices listed in this publication fall within the scope of strategic products described in the Foreign Exchange and Foreign Trade Law of Japan, it is necessary to obtain approval to export such SHARP devices.
- This publication is the proprietary product of SHARP and is copyrighted, with all rights reserved. Under the copyright laws, no part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose, in whole or in part, without the express written permission of SHARP. Express written permission is also required before any use of this publication may be made by a third party.
- Contact and consult with a SHARP representative if there are any questions about the contents of this publication.